
A Scalable Architecture for Rapid Terrain Analysis
Frido Kuijper and Ruben Smelik

TNO Defence, Safety and Security – The Netherlands

frido.kuijper@tno.nl | ruben.smelik@tno.nl

Rationale

Problem

Solution

Implementation

Results

Terrain databases are a key prerequisite for all simulations

that seek to support training or decision support

during military exercises and missions

The generation of terrain databases involves

complex and extensive compute tasks on

large amounts of geospatial data and models

and is therefore time consuming and costly

Automatic Rapid Analysis shall significantly reduce

terrain database generation lead times

Design a software architecture that

• facilitates development of complex compute flows for terrain analysis and modelling

• allows for execution of the compute flows on a scalable compute cluster

• improves maintainability and quality of the software

• simplifies production of large terrain databases

• drastically reduces compute times through scalable cluster deployment

complex

compute flows

large

code base

big

data amounts

scalable

compute power

unified in an architecture dedicated to rapid terrain analysis

The ARA architecture is dedicated to the flexible decomposition of terrain analysis tasks

into smaller subtasks in order to spread the computation and data load across a cluster

of compute nodes.

Key concepts

Software Tools are used to transform source Data Items into new Data Items. A Flow is a

set of Operations that specify input/output Data Items and associated Tools. During

execution, the architecture turns the Operations into Jobs on a compute cluster.

Job dependency management

The architecture knows how operations

depend on changes in data items and

tool code. Jobs are created as required

and executed as soon as possible.

the tiling mechanism splits geospatial areas into independent jobs

Parallel processing

Independent flows/jobs run in parallel.

Mechanisms for data parallelism:

- batching operations

- tiling operations

Data transfer management

The architecture automatically prepares

input data items for jobs on a specific

node in a cluster and archives results

on central storage as required.

Scalability

The architecture can be deployed on a

scalable compute cluster. Tool code is

agnostic to cluster configuration and

the parallel processing mechanisms

ARA tools are modular, relatively small pieces of Python code

using the ARA API to access the architecture’s features.

The parallel processing mechanisms are fully transparent in tool code.

class Tool(BaseTool):

def RunTool(self):

self.logInfo('*** Elevation - compute DTM ***')

Get local filenames

input_dsm = self.getInputLocalPath('input_dsm')

output_dtm = self.getOutputLocalPath('output_dtm')

Get parameters

threshold = self.getParameter('threshold')

Perform the DTM filtering

self.RunDsm2Dtm(input_dsm, output_dtm, threshold)

Register output

self.registerOutput('output_dtm')

Signal tool completion

self.exitNoError('Done')

Main components ARA Project manager and ARA Node Manager implemented for

Windows compute clusters. Jobs interface through Python API to ARA architecture.

The ARA architecture was tested on a sample project for country size terrain database

generation (440 km x 350 km, 1.2 TB source data)

• Processing times reduced from weeks time to over-night

• Scaling of number of nodes practically linearly reduces processing time

• Modular tool code structure improves maintainability

• Job dependency and data management improves user experience when iteratively

developing terrain projects

1 week

20 hours
11 hours

0

1

2

3

4

5

6

7

8

Without ARA 4 ARA nodes 8 ARA nodes

Processing sample country (440 km x 350 km) terrain database

Processing time in days

